Loss of the dopaminergic input to the striatum, characterizing Parkinson's disease, leads to the hyper-activity of two key nuclei of the basal ganglia (BG): the subthalamic nucleus (STN) and the internal segment of the globus pallidus (GPi). The anatomo-physiological organization of the BG and their output suggested that interfering with such hyper-activity could restore motor function and improve parkinsonism. Several animal models in rodents and primates, as well as clinical studies and neurosurgical treatments, have confirmed such hypothesis. This chapter will review the physiological and behavioural data obtained by inactivating the GPi or the STN by means of lesions, pharmacological approaches and deep brain stimulation. The consequences of these treatments will be examined at levels ranging from cellular to complex behavioural changes. Some of this experimental evidence suggested new and effective clinical treatments for PD, which are now routinely used worldwide. However, further studies are necessary to better understand the consequences of GPi and STN manipulation especially at the cognitive level in order to improve functional neurosurgical treatments for Parkinson's disease by minimizing risks of side-effects.