The perception of time is susceptible to distortion by factors such as attention, emotion, or even the physical properties of the stimulus to be timed. In adults, there is now evidence for a left-right spatial representation of time or " mental time-line " , in which short durations map to the left side of space, whereas long durations map to the right. We investigated the developmental trajectory of the mental time-line, by examining how spatial and numerical stimulus properties affect temporal bisection judgements in 3 groups of children (5, 8 or 10 year olds), as well as in adults. In contrast to previous developmental studies of the spatial representation of time, we manipulated spatial position (left-right) rather than spatial magnitude (distance) so as to pinpoint the age at which the mental time-line begins to influence the judgement of time. In addition, we manipulated spatial position symbolically, either directly, using left-or right-pointing arrows, or indirectly, using low (1) or high (9) digits. In adults and older children (10 year olds), the rightward arrow and the higher digit were judged to last longer. However, time judgements were unaffected by arrow direction and digits in the younger children. Therefore, the temporal distortions induced by symbolic representations of space (arrows) or number (digits) emerged with development, suggesting that the mental time-line is not derived from a primitive spatial representation of time but, rather, is the fruit of learning and is acquired around the age of 8-10 years old.