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Spatial navigation encompasses the capability to compute

various paths leading to one’s goal. In order to achieve such a

feat, a navigation system must also have access to the animal’s

current location. Although the latter is well documented with

over forty years of research devoted to hippocampal place

cells, how the goal location is coded and kept in memory is a

much more debated issue. Here, we review evidence that such

processing occurs within a small network of structures

involving at the very least the hippocampus and the frontal

cortex. Indeed, growing evidence suggests that path planning

relies on a much more extended neural network, with each of its

subcomponent ensuring a specific role in the overall process.

We suggest that understanding how goal location is

remembered can only be achieved through a better

characterization of the time-defined events during path

planning at both neural and behavioral levels.
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Introduction
The ability to navigate efficiently in space is crucial for

the survival of most species. The last four decades have

provided increasing evidence that the hippocampus and

its place cells carry out fundamental computations

involved in spatial navigation [1]. Place cells are hippo-

campal pyramidal neurons that fire only when a rat is in a

particular location within an environment, thereby allow-

ing self-localization (reviews in [2,3]). They therefore

provide ideal building blocks for implementing the capa-

bility to navigate since they may support a representation

of both the environment layout and the animal’s current

location in that environment. However, for an animal to

solve a complex spatial problem, it must also know where

to go and how to get there. Behavioral performance
www.sciencedirect.com 
observed during the water-maze navigation task is the

best demonstration of this capability. Current evidence

indicate that rats may rapidly store new goal locations

under certain circumstances and that hippocampal activ-

ity is involved in this memory both during online [4,5] and

offline episodes [6,7].

In spite of this behavioral evidence, how a rat remembers

the location of a goal and plans a path to this location is

still poorly understood [2,8]. In particular, while place

cells are clearly involved in self-localization, their role in

the memory of the goal location faces a logical difficulty

[9,10]. Indeed, if place cells support both mapping and

planning functions of a navigation system, the code

conveyed by their firing activity would become ambigu-

ous. Following this idea, place cells would fire whenever

the rat has to process goal information, which presumably

can happen everywhere in navigation space, and so would

not be expected to display a precise firing field. Because

firing fields are usually well defined even during naviga-

tion behavior, it is therefore unlikely that place cells carry

direct information about the goal.

Nevertheless, recent research has revealed a number of

alternative solutions through which hippocampal place

cell activity may carry indirect information about goal

locations. In addition, place cells themselves need not

directly signal information about the goal, if ‘goal’ (or

‘critic’) cells, located elsewhere, receive input from place

cells together with reward information so as to signal goal

direction during navigation. In this hypothesis, these cells

would have firing clustered at the goal locations whereas

place cells need not [11,12]. With regard to this possibil-

ity, a number of extra-hippocampal regions have been

reported to be involved one way or another in the coding

and storage of goal information. Here we review the

current literature data about how goal locations may be

coded and remembered. A central aspect of such proces-

sing is that remembering goal location is required only

during a specific phase of spatial navigation, namely when

making a decision as to which direction to take to reach a

goal location and/or planning a path to that goal location.

We therefore also address recent data that show neural

activities to be influenced by the location of the goal

during decision making, thereby suggesting that remem-

bering a goal location might be embedded into a more

global process.

Memory of goal location in the hippocampus
As mentioned above, even though the spatial function of

place cells is hardly disputable, their direct involvement

in remembering goal locations is controversial, at least in
Current Opinion in Behavioral Sciences 2017, 17:51–56

mailto:bruno.poucet@univ-amu.fr
http://dx.doi.org/10.1016/j.cobeha.2017.06.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cobeha.2017.06.003&domain=pdf
http://www.sciencedirect.com/science/journal/23521546


52 Memory in time and space
terms of field accumulation at the goal location. Although

no simple representation of goal within the hippocampus

has yet been found, several valuable observations have

been reported.

The first is that firing field distributions may be biased

during performance of goal-related tasks. Thus, field

accumulation at the goal was seen while rats swam in

an annular water maze in which an escape platform could

be raised at a fixed location [13]. These results suggest

that the hippocampus somehow over-represents behav-

iorally significant regions of space. Another study, in

which place cells were recorded from rats trained to take

fixed trajectories to obtain intracranial stimulation

rewards at two specific locations in a cylinder, found that

some cells changed their firing patterns as the rat learned

the task and displayed excess firing at the two rewarded

locations [14]. This finding was confirmed more recently

in a food rewarded spatial learning task, in which CA1

firing fields were reorganized to represent newly learnt

goal locations [15�]. These new representations ree-

merged during subsequent memory recall. Their stabili-

zation and their retrieval were seen to depend on reacti-

vations associated with sharp wave/ripple network

oscillations, thus supporting the hypothesis that memory

for goal locations was encoded in the assembly firing

patterns within the hippocampus (see also [16]). Changes

in firing field density that occur when fields shift location

in a goal-directed manner have been suggested to carry

enough information about goal direction for successful

navigation [10].

In contrast to these reports of excess place cell fields

numbers at goals, other studies failed to see any such

tendency during spatial tasks. For instance, place cells

were recorded while rats performed a continuous place

navigation task (see Figure 1a) in which they had to enter

an unmarked circular goal zone in a cylindrical arena and

stay there for two seconds to release a food pellet at a

random location in the environment; then, they had to

leave the goal zone to find and eat the pellet [17,18].

Thus, the task required the rat to make target-directed

movements to an unmarked goal while preserving the

undirected foraging behavior necessary for sampling unit

activity everywhere in the apparatus. In addition, the

reward location was consistently dissociated from the

constant goal zone, thus making it possible to disentangle

the goal value of places from their reward value. Lastly, as

navigation paths started from the last reward location

which varied randomly, rat’s trajectories also varied con-

siderably across trials. Under these circumstances, no

clustering of firing fields was seen at the goal location [17].

Although this could be a result of dissociating the goal

zone from the variable reward site, several studies in

which the goal and reward sites were coincident also

failed to see firing field accumulation at the goal
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[19,20], or to see fields undergo systematic changes when

the goal was moved [19–22]. It is therefore possible that

idiosyncratic characteristics of behavioral tasks impact the

hippocampal representation so that fields over-represent

specific places. For example, the existence of fixed tra-

jectories such as those observed when both rat’s starting

point and goal locations are constant [13,15�] may increase

place cell excitability when the rat gets close to the goal

location along the navigation path.

In support of the last hypothesis, two interesting findings

need be mentioned here. First, moving the platform to a

new location in the annular water maze was observed to

induce excess firing at the new location, but this excess

firing vanished rapidly as the rat learned the new goal

[23]. So it cannot be excluded that field accumulation at a

goal may be a transient phenomenon observed under

certain conditions.

Second, field accumulation at a goal may also instead

reflect excess goal firing of place cells with a field else-

where in space as observed both in rats [17] and in mice

[24]. For example, in the continuous place navigation task

described above, most place cells discharged a few spikes

out of their primary firing field when the rat was at the

goal location (see Figure 1b). A further observation was

that such extra-firing at the goal was not associated with

increased occurrence of sharp wave ripple activity [25,26],

thus making it unlikely that it reflected replay of a

trajectory that ended at the goal location [17]. In addition,

even hippocampal pyramidal cells that were silent or had

no clear-cut field in the apparatus were seen to display

goal-related firing. Although this firing was weak at the

single cell level, it was remarkably coherent at the popu-

lation level, therefore suggesting that place cells provide a

consistent signal when the rat is at the goal. This popula-

tion signal is so precisely defined in the time domain that

it could reflect the rat’s awareness that it is at the correct

location (see Figure 1c). This awareness could rely on

several processes such as online maintenance of the goal

representation, comparisons of the current panorama with

a memory template of the goal panorama, or a simple

temporal estimation of the time spent at the goal. Alter-

natively, this signal could represent expectancy of

upcoming reward [27]. At this time, whether place cell

goal-related firing is caused by identification of the goal

location rather than a reward-modulated signal is still

unclear. Nonetheless, this reward-modulated activity

could explain, at least partly, the discrepancies about

the influence of the goal location on the changes affecting

firing fields in goal-directed spatial tasks

[13,14,15�,17,19,20].

Memory of goal location in extra-hippocampal
structures
The lack of a clear-cut place cell representation of goal

locations suggests that such a representation may exist in
www.sciencedirect.com
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Figure 1

A model network for goal-coding. (a) Sketch of the continuous navigation task. The rat must enter an unmarked goal zone (1, red dashed circle)

and stay there for two seconds to release a food pellet from an overhead feeder (2). To find and eat the food pellet, the rat has to forage around

the cylinder (3) before initiating a new navigation path to the goal. (b) Trajectory (left) and firing rate (right) maps of one medial prefrontal cortex

cell (mPFC) and one hippocampal place cell (HPC) recorded in the continuous navigation task. Red dots in the trajectories indicate the rat’s

location when the cell is active. The mPFC cell has a large firing field that roughly overlaps the goal zone. In contrast, the HPC place cell has its

main firing field away from the goal though it fires a few additional spikes at the goal location. (c) Cumulative PETH for all HPC place cells

recorded from rats tested in the continuous navigation task. The 2 s goal period (0–2 s) is bracketed by vertical lines (200 ms bins). Note that the

mean peak activity is delayed by �1 s during the goal period. (d) Distribution of firing field centroids for both HPC and mPFC cell populations.

While HPC fields are widely and homogenously distributed, mPFC fields are clustered in the goal zone (red dots). (e–g) A model network for goal-

coding. In this highly speculative model, mPFC neurons provide coarse coding of goal locations independent of whether the animal is actually

engaged in navigation [30]. HPC cells provide a population signal when the rat is at the goal, possibly indicating correct goal localization [17].

mPFC and HPC are connected to each other through various pathways, including one pathway passing through the thalamic nucleus reuniens

(RE) [36]. This circuit is assumed to be crucial for how goal locations are remembered on the long term (panel f). (e) During acquisition: sensory

inputs from the entorhinal cortex (EC) and place information from HPC are associated with reward value from the ventral tegmental area (VTA)

[31,50] so that the goal location is represented in mPFC [30]. This representation is further reinforced by reward expectancy through activation of

a set of structures including VTA [50], orbitofrontal cortex (OFC) [48] and ventral striatum (NAc) [49]. (f) During retrieval of goal location from long-

term memory: sensory inputs (EC) enable mPFC goal representation through a hippocampo-fronto-thalamic loop (involving RE) [37] supplemented

by OFC reward expectancy signal [48,49]. (g) During navigation: mPFC-dependent short-term (working) memory of goal location triggers the

selection of the strategy (RE) [40] leading to appropriate locomotor outputs from ventral striatum (NAc).
other brain structures. Here we briefly review some

findings showing that the medial prefrontal cortex

(mPFC) might have a special role in this function. Before

doing so, however, it is worth noting that remembering a

goal location can reflect two different memory processes,

which roughly correspond to two distinct stages of spatial

navigation. First, information about the goal location has

to be retrieved from long-term memory before initiating
www.sciencedirect.com 
any navigational trajectory. The primary aim of this short

review is to address this long-term memory of the goal

location. Nevertheless, to be useful, this information

must also be kept in a temporary short-term working

memory store to ensure that the appropriate trajectory

is planned and executed. It is remarkable that the pre-

frontal cortex appears to be involved in these two aspects

of goal memory.
Current Opinion in Behavioral Sciences 2017, 17:51–56
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Thus, cell discharge in mPFC has been shown to be

associated with temporary storage of information in mem-

ory [28,29]. Indeed, the activity of mPFC neuronal

ensembles changed in parallel with learning of a delayed

alternation task and correctly allowed decoding of previ-

ous and future goal choices, showing therefore that work-

ing memory is robustly represented at ensemble level. In

a similar vein, many mPFC neurons were seen to selec-

tively ‘tag’ specific arms of a radial arm maze, according to

both previous choices and reward expectancies [29].

Noticeably, although this tagging is essential for online

maintenance of goal locations in working memory, hence

for prospective coding and decision making during spatial

navigation, it cannot be used for remembering goal loca-

tions on a longer term.

Nevertheless, another form of activity, compatible with a

long-term memory of goal location, has also been docu-

mented. Medial prefrontal neurons were recorded while

rats were performing the continuous place navigation task

described above, in which they had go to a goal location to

cause pellet release and then had to find the pellet.

Roughly a quarter of them had clear spatial correlates

(a result not seen when rats simply forage randomly), and

their fields were clustered in the immediate vicinity of

goal locations [30] (see Figure 1d). Since these goal

locations were dissociated from eating locations, mPFC

cells coded the motivational salience of these specific

locations, independently of their primary reward proper-

ties. In addition, mPFC goal cell firing did not result from

the occurrence of task-related specific behaviors. In sum,

these cells appear to provide a reliable signal about the

location of goals.

How might this signal be generated? There are many

areas connecting the medial prefrontal cortex. Thus,

mPFC receives direct input from the ventral hippocam-

pus, whose pyramidal cells provide a low resolution

positional signal (in particular to the prelimbic area of

mPFC), as well as from the ventral tegmental area which

may be the source of information about the reward value

of different locations in the environment [31]. In addition,

the ventral hippocampus would selectively route goal-

related information to mPFC [32,33�], thus targeting

neurons that label locations of high motivational signifi-

cance. Interestingly, integrity of ventral hippocampal

function is required for goal-directed navigation perfor-

mance and for coherent mPFC goal coding [34], as well as

for updating the value of a goal location [35].

In return, the medial prefrontal cortex connects back to

the hippocampus through several indirect pathways. One

of these pathways passes through nucleus reuniens, a

ventral midline thalamic nucleus whose some collaterals

project to both the mPFC and hippocampus, thus making

it a key structure in the communication between the

mPFC and hippocampus [36]. Since damage to nucleus
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reuniens specifically abolishes long-term memory of the

goal location in a modified version of the water maze task

[37], it appears that this communication is crucial for

remembering as well as rapid encoding of goal locations

[38,39] and more generally for spatial navigation [40].

How could mPFC goal cells be useful for spatial naviga-

tion? Several models have been proposed which fall into

two classes. The first considers that navigation is achieved

through the specification of a sequence of places to

traverse to reach the goal. In this view, mPFC goal signals

would be retro-propagated from the goal location to the

rat’s current location so as to activate the set of places that

minimize the overall path to the goal [41,42]. The second

class stipulates that navigation is achieved through the

determination of the vector between the current and goal

locations [43]. Although such computations are specu-

lated to involve entorhinal grid cells [44,45], they would

require a strong signal to mark the grid cell node corre-

sponding to the goal location. There are connections from

mPFC to the entorhinal cortex that are susceptible to

convey goal information but it is currently unknown if

these connections influence grid cell activity in any

manner. However, it is also possible that reciprocal con-

nections between the hippocampus and entorhinal cortex

are sufficient to ‘mark’ the grid cell nodes to the goal

location through place cell goal-related signals, which

would make unnecessary a direct connection from mPFC

to the entorhinal cortex. Finally, we note that the two

mechanisms of goal-directed spatial navigation by vector

representation and path computation are seen to operate

flexibly and in parallel in humans and to activate the

hippocampal formation [8,46��].

Conclusion
Key aspects from the current state of research on goal-

oriented navigation highlight the central role of the

hippocampus and medial prefrontal cortex in this process.

However, these structures are likely just components of a

more distributed neural network that necessarily com-

bines the sensory and reward aspects of goal locations.

Such network would therefore include the orbitofrontal

cortex [47,48], the ventral striatum [49] and the ventral

tegmental area [50] (see Figure 1e–g). Keeping a goal

location in memory therefore requires activation of a

widespread brain network.

As a final note, we would like to stress the possibility that

remembering goal locations may be supported by

dynamic coding and retrieval of information at certain

stages of navigation such as when planning a path or

making a decision at waypoints. Accumulating evidence

strongly support the existence of various forms of pro-

spective signals in the discharge of hippocampal place

cells during these stages both in animals [51–53,54�] and

humans [55��]. It is still unclear if such prospective firing

codes a representation of the goal location [56] or a route
www.sciencedirect.com
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to that goal [57]. The possibility also exists that place cells

encode a vectorial representation of the goal as recently

shown in bats [58], even though similar evidence in rats is

lacking so far. Whatever the alternative, however, the

existence of prospective firing suggests that goal memory

results from the activity of neuronal assemblies involved

in path planning. Such assemblies are shaped during

learning so that important places are embedded in a

topological representation of space from which possible

sequences of places or actions can be derived to perform

efficient navigation. Thus, understanding how goal loca-

tions are remembered could ultimately rely on under-

standing how path planning is achieved.
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